Identification of Novel Amelogenin-Binding Proteins by Proteomics Analysis
نویسندگان
چکیده
Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology. It is used in periodontal surgery to regenerate cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying periodontal regeneration are still unclear. In this study, we investigated the proteins bound to amelogenin, which are suggested to play a pivotal role in promoting periodontal tissue regeneration. To identify new molecules that interact with amelogenin and are involved in osteoblast activation, we employed coupling affinity chromatography with proteomic analysis in fractionated SaOS-2 osteoblastic cell lysate. In SaOS-2 cells, many of the amelogenin-interacting proteins in the cytoplasm were mainly cytoskeletal proteins and several chaperone molecules of heat shock protein 70 (HSP70) family. On the other hand, the proteomic profiles of amelogenin-interacting proteins in the membrane fraction of the cell extracts were quite different from those of the cytosolic-fraction. They were mainly endoplasmic reticulum (ER)-associated proteins, with lesser quantities of mitochondrial proteins and nucleoprotein. Among the identified amelogenin-interacting proteins, we validated the biological interaction of amelogenin with glucose-regulated protein 78 (Grp78/Bip), which was identified in both cytosolic and membrane-enriched fractions. Confocal co-localization experiment strongly suggested that Grp78/Bip could be an amelogenin receptor candidate. Further biological evaluations were examined by Grp78/Bip knockdown analysis with and without amelogenin. Within the limits of the present study, the interaction of amelogenin with Grp78/Bip contributed to cell proliferation, rather than correlate with the osteogenic differentiation in SaOS-2 cells. Although the biological significance of other interactions are not yet explored, these findings suggest that the differential effects of amelogenin-derived osteoblast activation could be of potential clinical significance for understanding the cellular and molecular bases of amelogenin-induced periodontal tissue regeneration.
منابع مشابه
O-5: Identification of Novel ImmunodominantEpididymal Sperm Proteins Using CombinatorialApproach
Background: Alteration in the protein signatures of functionally immature testicular spermatozoa occurs during their journey through the epididymis. This leads to acquisition of sperm domain specific functions essential for successful fertilization. Epididymal sperm proteins are preferred targets for immunocontraception as well as in elucidating the causes of infertility. The Background of the ...
متن کاملIdentification of Agents with Potential Leishmania Malate Dehydrogenase Inhibitor Activity: A Proteomic and Molecular Docking Approach
Background and purpose: Leishmaniasis is one of the most important infectious diseases caused by different species of the Leishmania, which is a public health problem worldwide. So far, no effective vaccine is introduced for this disease and drug therapy is associated with many side effects. Therefore, this study was designed to identify novel FDA-approved compounds with anti-leishmanial activ...
متن کاملIdentification of Trombospondin-1 as a Novel Amelogenin Interactor by Functional Proteomics
Amelogenins are a set of low molecular-weight enamel proteins belonging to a group of extracellular matrix (ECM) proteins with a key role in tooth enamel development and in other regeneration processes, such as wound healing and angiogenesis. Since only few data are actually available to unravel amelogenin mechanism of action in chronic skin healing restoration, we moved to the full characteriz...
متن کاملGlucose-Regulated Protein 78: A Novel Therapeutic Target for Amelogenin-Induced Periodontal Tissue Regeneration
Amelogenin, the major component of a commercial enamel matrix derivative (Straumann® Emdogain), is commonly employed in periodontology. It is mainly used in periodontal surgery to stimulate the regeneration of periodontal tissues, including the cementum, periodontal ligament, and alveolar bone. However, the precise molecular mechanisms underlying amelogenin-induced regeneration have not yet bee...
متن کاملComparative proteomics analysis of a novel g-radiation-resistant bacterium wild-type Bacillus megaterium strain WHO DQ973298 recovering from 5 KGy g-irradiation
In order to examine radiation-induced proteins in an extremely radio-resistant bacterium, it became possibleto perform comparative proteomic analysis on radio-resistance Bacillus megaterium WHO as a wildtypestrain for the first time. Variation in cellular proteins profiles of the Bacillus megaterium WHO after 5KGy γ-irradiation were analyzed by two-dimensional poly acryl amide...
متن کامل